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Reference notation

This document uses a �xed notation for all of its contents, making them referenceable:

/A#/ application attribute

/B#/ purpose boundary

/C#/ challenge or assumption

/D#/ data

/E#/ software environment attribute

/F#/ functional requirement

/G#/ target group

/M#/ model

/P#/ purpose criterion

/Q#/ non functional requirement

/T#/ test case

A preceding “O” marks optional points. These relate to features that are desired and

planned, but can not surely be implemented in the project’s scope. They also serve as

an outlook for further development.
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1 Purpose and Goals

When developing software, specifying its architecture in a sophisticated way is a crucial,

yet challenging task. Decisions made at this point highly in�uence the software’s quality

of service (QoS), but are usually di�cult to change, as redesigns may be costly [Reussner

et al., 2011]. To prevent poor design in the �rst place, Palladio, a model-driven approach

for software simulation, enables developers to analyse component-based softwares’

QoS during the de�nition phase before actually writing any code. Using Palladio, all

parties involved in the development of component-based software model their domain

in the Palladio Component Model (PCM). This information is then used to simulate the

software’s behaviour with a focus on its QoS attributes.

In many scenarios, however, some to all source code may already exist. Analysis with

Palladio might still be desired: For example to simulate a component’s interaction with

a software system or to freshly start analysing existing software. For such cases, SoMoX,

a software for static source code analysis, allows users to re-engineer their software’s

architecture into a PCM. The results contain the software’s component boundaries,

their bindings to the provided source code, and their service e�ect speci�cation (SEFF)

[Krogmann, 2011]. Unfortunately, SoMoX’ static approach does not allow it to determine

the software’s resource demands, which are essential for performance analysis.

[Krogmann, 2011] also describes Beagle, an approach for dynamic source code analy-

sis to complement SoMoX. It aims to conduct performance measurements on software’s

source code in order to determine its component’s internal actions resource demands.

Adding this information to the software’s PCM enables developers to import their

software into Palladio with minimal e�ort. The purpose of this project is to implement

Beagle. Based on the foundations in [Krogmann, 2011], it aims to develop a piece

of software adding dynamic properties to a PCM using contemporary measurement

software.

It’s important do understand the di�erence between simple performance measure-

ments and the detection of resource demands. While the �rst one simply determines

how long a piece of code need to execute a given task on a given machine, the latter

respects the implications of component-based software architecture. This means Beagle

tries to gain resource demand information that is independent from a component’s

usage,deployment, and assembly context.
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1 Purpose and Goals

1.1 Criteria

Mandatory

/P10/ Beagle enables users to analyse given source code regarding the resources

its internal actions demand when executed.

/P20/ Beagle annotates its resource demand �ndings in a given instance of the

software’s PCM, enabling users to import existing software into Palladio

for analysis.

Optional

/OP10/ Beagle analyses consigned source code for further dynamic behavioural at-

tributes like the number of loop executions in SEFF loops and the probability

for branches in SEFF conditions.

/OP20/ Beagle outputs the results as a function of the input parameters of the

internal actions as resource demand annotations in the PCM.

/OP30/ Beagle o�ers users a Graphical User Interface (GUI) to control the analysis .

1.2 Boundary

/B10/ Beagle does not perform actual measurements on source code. This is done

by other software like Kieker. Their results are transferred to Beagle using

the Common Trace API (CTA).

/B20/ Beagle does not reconstruct a model of software’s architecture from its

source code. This is done by other software like SoMoX.

/B30/ Beagle does not reconstruct the internal structure of components like their

SEFF. This is done by other tools like SoMoX.

/B40/ Beagle does not assert that analysis of source code written in a language

other than Java 6 is possible.

/B50/ Beagle does neither do performance analysis nor prediction. That is may be

achieved with Palladio.
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1.2 Boundary

paramaterise
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«includes»

«extends»

«extends»

«includes»

«includes»

Figure 1.1: UML Use Case Diagram. Optional features are drawn grey.
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2 Application

2.1 Application Field

/A10/ Beagle can be used to re-engineer source code. To start using Palladio for

an existing software, Beagle can be combined with a tool for static code

analysis like SoMoX. This way, the software can quickly be analysed with

Palladio. Modelling an existing software is such a time-consuming task that

automatic modelling is a valuable feature which may be crucial to have for

developers who start using Palladio.

/A20/ Beagle can be used for software development. Early implementations of

components modelled in the PCM can be analysed with Beagle in order to

predict their performance in interaction with the software system. This

leads to fast detection of arising problems (like implementation errors or

unrealistic modelling in the PCM), which can then be �xed early on.

/A30/ Beagle may be used for prototyping. Di�erent implementations of a com-

ponent modelled in the PCM may be analysed with Beagle to determine

their resource demands. Palladio can then be used to simulate the software

system’s performance with each implementation. As performance is multi-

dimensional, this can lead to more precise information about the di�erent

implementation’s e�ects on the system’s runtime.

/A40/ Beagle can be used to verify software’s design and implementation. After

developing the software with Palladio and implementing it, Beagle can

analyse its resource demands which can then be compared to the predicted

ones. With this approach, di�erences and problems in the implementation

can be detected and resolved more easily.

2.2 Target Group

/G10/ Software architects can use Beagle predominantly for /A10/ and /A40/.

/G20/ System deployers can use Beagle predominantly for /A40/.

/G30/ Component developers can use Beagle predominantly for /A20/ and /A30/.
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2 Application
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Figure 2.1: A typical work�ow when using Beagle to re-engineer existing source code

(/A10/).
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2.2 Target Group
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Figure 2.2: A typical work�ow when using Beagle during software development (/A20/).
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2 Application
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2.2 Target Group
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Figure 2.4: A typical work�ow when using Beagle to verify the implementation (/A40/).
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3 Environment

/E10/ Beagle should run on a Java 8 runtime environment (or higher) and Eclipse

distribution that is up to date with Eclipse Mars (4.5).

/E20/ Beagle requires a PCM instance modelling the software to be analysed. The

model must contain all components and their SEFFs, the source code and

the PCM source code decorator.

/E30/ Beagle requires the CTA to communicate with performance measurement

software.

/E40/ Users should not run other programs while Beagle is running as this disturbs

the measurement. To receive optimal measurements, Beagle should run on

a dedicated server (See also /C130/).

3.1 Component Model

 
  Common Trace API

 
  Resource Annotations

 
  components
  SEFF
  source code decorator model

Palladio Component
Model

measurement software
Beagle

Figure 3.1: Beagle and its interaction with other software
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4 Data

In the following chapter, “the software” refers to the software a user wants to analyse

with Beagle. The term refers not only to source code, but also its conceptional attributes,

like its purpose, structure and architecture.

Beagle deals with two major data artefacts: The software’s source code and an

instance of the PCM describing the software (hereafter to be called “input source code”,

“input PCM” or simply “input artefacts”). Beagle will use the provided data to execute

its tasks and write its results back into the PCM instance (hereafter to be called “result

PCM”) afterwards.

4.1 Input

Mandatory

/D10/ The software’s source code. It must be written in Java and either

• be provided together with .class �les compiled out of it, such that

the �les are executable on a Java Runtime Environment (JRE) installed

on the computer Beagle runs on, or

• be compilable by a JDK installed on the computer Beagle runs on.

/D20/ Information about the software’s components. They must be modelled in

the input PCM.

/D30/ Information about the software’s components’ SEFFs. They must be mod-

elled in the input PCM.

/D40/ Mappings of the software’s components’ SEFFs to the parts in the source

code implementing them. They must be modelled in the input PCMs source

code decorator.

Optional

/OD10/ User provided information about the software’s parts he wishes to analyse.

/OD20/ User provided information about measurement timeouts. May be provided

prior to or during Beagle’s execution.
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4 Data

4.2 Output

Mandatory

/D100/ The software’s components’ CPU resource demands.

Optional

/OD100/ The software’s components’ internal actions’ further resource demands,

like hard disk or network usage.

/OD110/ Probabilities of branches to be taken SEFF conditions.

/OD120/ Probable number of repeats in SEFF loops.

/OD130/ Measurement status data, containing all information required to resume a

measurement (see /OF130/, /OF140/, enables /OF160/).

/OD140/ Veri�cation data to check whether input artefacts changed (enables /OF150/).
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5 Functional Requirements

Given Beagle is called with valid input artefacts (see p. 13), it must ful�l the following

requirements:

5.1 Measurement

Mandatory

/F10/ Using the information provided in the PCM, Beagle determines the sections

in the source code to be measured in order to �nd internal actions’ resource

demands. Correctly determining these sections assures the measurement

results do not depend on the measured component’s assembly context.

/F20/ Beagle conducts measurements of the sections found by /F10/ by utilising

measurement software.

/F30/ Beagle uses existing measurement software for /F20/.

Optional

/OF10/ Beagle approximately determines coherences between components’ inter-

face parameters and their resource demands. This enables Beagle to �nd

resource demands independent from the measured component’s usage con-

text.

/OF20/ Beagle determines the probability for each case to be taken in encountered

SEFF conditions.

/OF30/ Beagle determines /OF20/ depending on the component’s interface parame-

ters. This enables Beagle to express them independent from the measured

component’s usage context.

/OF40/ Beagle determines the probable number of repetitions in encountered SEFF

loops.
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5 Functional Requirements

/OF50/ Beagle determines /OF40/ depending on the component’s interface parame-

ters. This enables Beagle to express them independent from the measured

component’s usage context.

/OF60/ Beagle runs benchmarks on hardware systems in order to provide infor-

mation to make its results transferable: Using the benchmark information,

measurement results can be transferred between di�erent hardware sys-

tems when simulating in Palladio. This insures the independence from the

component’s deployment context.

/OF70/ Beagle provides a functionality to stop measurements by an adaptive timeout

when enabled. This means that it aborts a measurement when it exceeds a

certain period of time. This timeout is adapted based on previous runs with

the same or similar arguments. It is increased if these previous runs took a

long time (as it is expected that these measurements will take a long time,

too) and decreased if they took a short time to answer a request.

/OF80/ Users can disable the adaptive timeout described in /OF70/ and replace it

with a set timeout or disable the timeout entirely.

5.2 Control

Optional

/OF100/ Users may choose whether Beagle will analyse the entire source code or

only parts of it.

/OF110/ Users may choose to re-analyse the source code or parts of it in order to

either gain more precision or to re�ect on source code changes.

/OF120/ Users may launch and control a measurement running on another computer

over a network.

/OF130/ Users may pause and resume a measurement. Pausing causes all analysis

activity to stop. Resuming continues the analysis from the beginning of the

measurement it was taking when it had been paused.

/OF140/ Users may resume a paused measurement (/OF130/) even if Beagle had been

closed after pausing it.

/OF150/ Beagle asserts that no input artefact (p. 14) has been changed between

pausing (/OF130/) and resuming (/OF140/) an analysis to assure its result’s

integrity.
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5.3 Result Annotation

/OF160/ Beagle’s results do not change, no matter how often the user chooses to pause

and resume the measurements. Therefore Beagle assures approximately

constant measurement conditions, e.g. by heating up the CPU with load

before starting measurements when resuming.

/OF170/ If requested by the user, Beagle shuts down the computer it’s running on

after it �nished a measurement.

5.3 Result Annotation

Mandatory

/F200/ Beagle stores all its results in the software’s PCM (“result PCM”, see p. 13).

/F210/ The result PCM is a valid PCM instance.

/F220/ As far as technically possible, Beagle’s results can be read from the result

PCM by a Palladio installation without Beagle.

/F230/ The result PCM contains all measured components’ internal actions’ re-

source demands.

/F240/ Beagle does not remove any information from the input PCM.

/F250/ Measurement results are saved onto a persistent medium to avoid data loss.

Optional

/OF200/ If Beagle found parametrised results (e.g. in /OF10/, /OF30/, /OF50/), they

are expressed using the PCM Stochastic Expression Language.
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6 Non-Functional Requirements

In order to be as independent as possible and to provide good QoS and user experience,

Beagle must ful�l the following requirements:

6.1 Dependencies

Mandatory

/Q10/ In order to use Beagle, the user is not required to have any software but

Java, Eclipse, Palladio, and a measurement software supported by Beagle

installed.

/Q20/ Beagle does not depend on any speci�c measurement software.

/Q30/ Beagle does not require its input artefacts to be generated by any speci�c

software.

Optional

/OQ10/ Beagle can be used on every combination of operating system and hardware

platform Eclipse and Palladio run on.

/OQ20/ No user interaction is required while Beagle conducts measurements.

/OQ30/ Beagle shall handle any error caused by the measured software (uncaught

exceptions, uncaught errors, calls to System#exit, or other unexpected

termination of the software’s process(es)). This means that neither will

Beagle crash because of such errors nor will other measurements be a�ected

by them.

/OQ40/ Beagle does not modify the provided source code �les.

6.2 User Interface and Experience

Mandatory

19



6 Non-Functional Requirements

/Q100/ Beagle is implemented as an Eclipse plug-in. Since both Palladio and its

extensions are Eclipse plug-ins, this ensures good usability.

/Q110/ Beagle uses native Eclipse features for its GUI.

/Q120/ Beagle can be controlled by context-sensitive menus in Eclipse.

Optional

/OQ100/ Beagle is integrated into SoMoX to automatically be executed after SoMoX

has �nished.

/OQ110/ Beagle can obtain its input artefacts from SoMoX so users do not need to

provide additional information after SoMoX has been started. If Beagle

requires more information than SoMoX provides, users can already submit

it while con�guring SoMoX.

/OQ120/ Beagle reports its progress to the user.

6.2.1 GUI Model

Users have several options to launch the analysis:

1. To analyse the entire project, there is an entry “Analyse with Beagle” in the

context menu of the .repository or .repository_diagram �le in Eclipse.

2. To analyse a single component, there is an entry “Analyse with Beagle” in the

context menu of each component in the repository diagram.

3. To analyse a single internal action, there is an entry “Analyse with Beagle” in the

context menu of each internal action in the SEFF diagram.

If an analysis with Beagle is not possible in option 1, 2, or 3, the context menu

entry will be shown greyed out and a description stating why the analysis is not

possible is shown when a user tries to start it.

4. If /OQ100/ is implemented, users have the option to automatically start the

analysis with Beagle after SoMoX has �nished when launching the latter.

When users launch the analysis, they are presented a window where they can adapt

certain Beagle settings:

1. If /OF80/ is implemented, users may adapt the default timeout.

2. If /OF120/ is implemented, the connection to the measurement machine can be

set up.

20



6.2 User Interface and Experience

3. If /OF60/ is implemented, users may choose to additionally benchmark their

hardware system.

If /OF60/ is implemented, Beagle also provides a button for benchmarking the hardware

without running any analysis.

When the analysis is running, a window reporting progress is displayed.

If /OF130/ is implemented, there is a button for pausing the analysis. If it is paused,

this button changes to a resume button. If /OF140/ is implemented and the users choose

to close Eclipse, a dialogue allowing them to resume the analysis appears every time

they launch Eclipse. This dialogue also o�ers the options to disable the dialogue for the

future and to abort the analysis and drop the data collected to this point. Additionally,

each context menu with the entry “Analyse with Beagle” also has another entry called

“Resume Latest Beagle Analysis” allowing the user to resume the analysis.

In the progress window, there is a button to abort the analysis.
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7 Test Cases

7.1 Functionality

Beagle has to correctly interact with the interfaces de�ned in /E10/, /E20/ and /E30/.

However, most tests must not include third party software but provide arti�cial input

data instead. Doing di�erently could result in testing third party software, or, even

worse, in not detecting errors and failures because they are compensated by other

software. Therefore, tests in this section always premise test-provided input artefacts.

Integration tests are described in the next section. Please note that /Q30/ and /OQ20/

are implicitly tested by the tests described below.

Mandatory

/T10/ Assert that Beagle is starting, running, and terminating by a simple run-

through. For a valid input, this has to work without exceptions and the

software has to terminate gracefully.

/T20/ Assert that Beagle discovers all sections needed for measurement and that

they are correct. A part of this can be implemented by checking if all code

sections (of the measured part) have been executed. Tests /F10/.

/T40/ Assert that all all measured resource demands are added to the result PCM

(which is read from where Beagle wrote it to) by comparing it with a manu-

ally created PCM instance. This includes to assert that the result PCM is

valid. Tests /P10/, /P20/, /F200/, /F210/ and /F230/.

/T50/ Assert that all information found in the input PCM can be found in the

result PCM. Tests /F240/.

/T60/ Assert that Beagle stops measurements after timeout. Provide input source

code which does not terminate, de�ne a timeout, and assert that Beagle

terminates after that timeout, but not sooner. Additionally assert that this

timeout can be turned o�. Tests ?? and ??.
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7 Test Cases

Optional

/OT10/ Assert that Beagle detects invalid input (e.g. if the PCM source code deco-

rator does not �t to the code) and does not crash but responds to it in an

acceptable way.

/OT20/ Assert that Beagle does not crash if the provided source code kills its pro-

cess(es) in any possible way. Tests /OQ30/.

/OT30/ Assert that approximate coherences between input parameters and resource

demands are annotated in the result PCM. This test can be extended to match

Beagle’s capabilities by providing source code with arbitrarily complex

resource demand functions. Tests /OF10/.

/OT40/ Assert that the result PCM contains approximations of the probability of

branches in SEFF conditions to be taken and numbers of repetitions in

SEFF loops. Optionally assert that these approximations are expressed

dependently on input parameters. Like /OT30/, this test can be extended

to match Beagle’s capabilities by providing source code with arbitrarily

complex relations between input parameters and repetitions of SEFF loops,

or branches taken in SEFF conditions. Tests /OF20/, /OF30/, /OF40/, /OF50/

and /OF200/.

/OT50/ Assert that it is possible for users to decide whether the whole source code

or only parts of it are analysed. Start several runs for di�erent parts in

given source code and determine the di�erent parts which have to be tested.

Assert that all other tests concerning the result PCM pass for the results of

each run. Tests /OF100/.

/OT60/ Assert that users are able to re-measure source code by measuring the same

source code several times. Assert that the individual results are united

correctly in the result PCM. Tests /OF110/.

/OT70/ Assert that pausing and resuming measurements works as expected by

testing the same source code without pausing and several di�erent numbers

of pauses. The result PCM has to be the same (because arti�cial input data

is provided, which is not exposed to environmental in�uences). Optionally,

close Beagle or modify input artefacts between pausing and resuming. Tests

/OF130/, /OF140/, /OF150/ and /OF160/.

/OT80/ Assert that Beagle shuts down the computer if requested in a manual test.

Run a measurement and activate shutting down and then check if it worked

and the results were saved. Tests /OF170/.
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7.2 Integration

/OT90/ Assert that running measurements over a network works exactly like run-

ning measurements locally by running a reasonable number of the above

tests on a setup that measures over a network. Tests /OF120/.

/OT100/ Assert that the input source code was not changed after Beagle has run.

Tests /OQ40/.

7.2 Integration

Mandatory

/T200/ Assert that Beagle works on a system with only the software speci�ed in

/Q10/. A new system has to be set up with only these software applications

and a reasonable number of the functionality tests have to be run on it (may

for example be achieved by running all tests on a continuous integration

service). Tests /Q10/.

/T210/ Assert that Beagle works with Kieker.

/T220/ Assert that the result PCM can be read by a Palladio installation without

Beagle by opening it on such a system. Tests /F220/.

Optional

/OT200/ Assert that Beagle works for di�erent operating systems and hardware by

running a reasonable number of integration tests on di�erent systems. Tests

/OQ10/.

/OT210/ Assert that it is possible to run Beagle automatically after SoMoX has

�nished by running a reasonable number of functionality tests with Bea-

gle being con�gured with and launched after SoMoX. Tests /OQ100/ and

/OQ110/.
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8 Discussion

8.1 Assumptions

/C10/ The measured software was built using component-based software archi-

tecture. This assumption is derived from working with Palladio, which

was built for analysing component-based software. Fortunately, it most of

the time imposes little loss of generality, as any object oriented software

can be described using terms of component-based software architecture

(considering each class as a component in the worst case). Such software

will naturally not have the advantages that come with the component-

based software approach but might still be wanted to be analysed for their

performance.

/C20/ The measured software system has a constant, deterministic runtime for

a �xed con�guration of input parameters when ignoring in�uences of the

hardware, the operating system, and the error of measurement. This will

be the case for most software systems. The fact that users try to measure

the software system when using Beagle implies they expect it to behave in

such a way.

/C30/ The input artefacts (see p. 13) are of integrity. This means that all parts of

the provided PCM describe the software correctly, completely, and exactly

like implemented in the source code. Beagle relies on this to be true and

may produce inaccurate or wrong results if it is not.

This assumption will not cause problems if the PCM was reverse-engineered

from the software’s source code. But if the model and implementation

diverged at any point (likely during the software’s implementation), it may,

however, lead to unexpected results.

/C40/ When using JaMopp, the source code’s Java version is probably restricted by

it. Making Beagle independent from JaMopp can be useful for future projects

since they then would be able to use functions of newer Java versions in

the software system to be tested.
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8 Discussion

8.2 Challenges

/C100/ There are a lot of factors in�uencing a CPU’s performance: operating

temperature, number of other processes, previous load, and data in cache,

to name just a few. Beagle aims to �nd ways to compensate these factors.

This may involve disabling Turbo Boost on Intel CPUs, reading the cores’

temperature and making sure the CPU is in a real world application thermal

state, as well as further measures.

/C110/ Beagle must ensure the transferability and scalability of its measurement

results across di�erent hardware platforms, in order to abstract them from

their deployment context. This stretches from software running on an aver-

age desktop pc via servers through to clusters of servers. Di�erent hardware

platforms vary in many di�erent dimensions (CPU frequency, number of

CPU cores, size and distribution of CPU caches, speed of RAM, network

speed, hard disk throughput, etc.), yet the results have to be representative.

/OF60/ already addresses this.

/C120/ As Beagle should be able to measure speci�c components, other components

of the software which are called during the measured component’s execution

may be desired to be mocked (especially those which take long time to return

or do not return at all, e.g. a GUI). Mocking a component might be very

e�ortful or even impossible. If this cannot be solved, Beagle may require

users to provide a test bed in which the measured components can be

executed.

/C130/ On modern operating systems, multitasking is the default. Users are used

to work on multiple tasks at the same time and have multiple programs

running simultaneously. This could, however, in�uence Beagle’s measure-

ment results. If a considerable impact on measurement results is recognised,

strategies to avoid them may be developed. These may including prompting

the user to close certain applications. Users will likely be advised to provide

a dedicated machine to run the measurements on.

/C140/ Beagle aims to parameterise its measurement results by the component’s

interface parameters. Such parametrisation will likely be described by a

regression function Rn → R. This elicits multiple challenges:

• Regression of multi-dimensional functions is a challenging task.

• The regression functions will probably not be continuous.

• It is unclear what the real number representation of an arbitrary Java

object might be.
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8.2 Challenges

Note that even if not all of the above points can be fully resolved, approx-

imate parametrisation might still produce better results than no parame-

terisation at all. The genetic programming approach (/C150/) might help

solving this, too.

/C150/ This projects focuses on measuring using dynamic analysis tools that pro-

vide their results through the CTA. [Krogmann, 2011], however, describes an

approach combining di�erent sources of resource demand data using genetic

programming. It aims to combine their advantages and would enable Beagle

to create a more accurate model of resource demands. Other performance

measurement techniques (such as ByCounter) could be integrated. Whether

this approach can be implemented in the scope of this project, needs further

investigation and consideration.
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9 Models

9.1 Scenario 1

EmmaSun
1
, a Java-based online shop is running on a middle-class web server. During

the �rst few years the software system was able to deal with almost 99.8% of incoming

requests and orders quite well and without any noticeable delay. After an enormous

expansion since the last year, the number of users is currently growing by about 5% per

week. Although the current servers are designed to ful�l a distinctly higher amount

of user requests, the administration reported some few dropouts as well as increasing

waiting times in individual applications. Unfortunately, the software system is based

on an early design that has grown over the years with missing documentation in many

cases. The e�ort to completly re-write it is unbearable. The code also scales bad, so

buying new servers will not solve the problem either. The only solution seems to

re-analyse the software’s source code and architecture to hopefully �nd the bottlenecks

that can be repaired with least e�ort. EmmaSun’s developers have heard of Palladio

and think it could serve them well to overcome their issues. Unfortunately, modelling

all existing code is such a huge task that the management is reluctant to make this step.

At this point, Beagle and SoMoX come into play. The team of software architects that

was commissioned by EmmaSun start to reverse-engineer a complete PCM instance

modelling all software components and their SEFFs using SoMoX. In conjunction with

Kieker, Beagle is then used to conduct measurements on the software’s components,

adding resource demand information to the PCM. After less than two days, the team

is able to analyse its software with Palladio and run performance predictions for var-

ious approaches of improvement. The analysis reveals an architectural violation of

certain software components, which leads to a a huge amount of inter-component calls

throughout various hierarchical layers.

After revising several improvement approaches, EmmaSun’s software architects

decide to add an extra cache which can store the results of most external calls and

makes them available almost immediately. predictions suggest that small changes in

the software’s architecture adopting these improvements will lead to a much better

performance. The software architects agree to implement the new design.

1
All characters and organisations appearing in this work are �ctitious. Any resemblance to real persons

or companies, living or dead, is purely coincidental.
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9 Models

After a two weeks, EmmaSun can already publish �rst changes that improve the

shop’s performance. The development team continues to use Palladio to model and

plan their software’s architecture, leading to further improvements in its code quality

and QoS.

9.2 Scenario 2

Two years later, EmmaSun emerged to be an established and much-used online shop.

The last years were busy and EmmaSun constantly hired new developers and deployed

its software on an evergrowing cluster of servers. Because of their good experience with

Palladio, EmmaSun’s software architects never stopped to model their software using

it. Thus, the software’s architecture became more and more sophisticated, increasing

EmmaSun’s QoS along the way.

Today, EmmaSun’s managers decided to o�er a new, ground-breaking feature: Auto-

matic audio conversion. Any audio piece, no matter whether it is sold on CD, tape, or

LP, will automatically be o�ered to users in various digital music formats, from high

quality FLACs to small 128 kbit/s MP3s. While the management is not, EmmaSun’s

development team is fully aware of the implications on performance this feature will

have. They decide that careful planing is crucial to o�er a reliable and fast conversion

service.

As usual, the software architects start to model the new feature’s sub-architecture

and components in the PCM. They cooperate continuously with the system deployers

to coordinate the necessary hardware changes. After that, the component developers

start to implement the new components. They soon realise that there are multiple ways

to implement the conversion engine. Especially, there are di�erent ways to parallelise

the task. Di�erent developers come up with di�erent approaches, all having their

advatages and disadvantages. The development management soon realises that the

e�ective performance will depend highly on the components’ usage and deployment

and cannot be predicted by simple measurements.

To determine the best solution, the developers start to implement a prototype for

each approach. The software architects then import each of these prototypes into

Palladio using SoMoX and Beagle, like they did two years ago. In Palladio, they are

able to simulate the load they think the system will face on the new servers planned

for purchase. Using the predictions, they are able to determine which approach will

perform best for the planned context. The development team starts to implement it.

Four months later, the new feature is almost ready to be launched. Most code has

been written and basic functionality has been asserted. The component developers

are mainly �xing minor bugs while the system deployers prepare to purchase and

install the newly required hardware. Meanwhile, the software architects import the

new code into Palladio using SoMoX and Beagle to assure the software system will
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9.2 Scenario 2

hold the predicted QoS. When analysing the imported model, they recognise signi�cant

di�erences between the initial predictions for the prototype and the ones made for

the actual implementation. The necessity to check copyright violations and content

integrity as well as making backups and reporting progress to the user resulted in

more network usage by the conversion component than predicted. Fortunately, this

bottleneck can be �xed by using better network infrastructure hardware.

When the new conversion feature is implemented, users are astonished by its speed.

EmmaSun’s largest competitor, Million Shopping
2
, releases a similar feature soon after.

But as users start using it, it becomes slower and less reliable over time, resulting in

unsatis�ed customers and sometimes even failed transactions. EmmaSun’s services, on

the other hand, prove to be reliable and scale very well. A year later, EmmaSun will

call the feature one of the main reasons they became the world’s leading online shop.

2
All characters and organisations appearing in this work are �ctitious. Any resemblance to real persons

or companies, living or dead, is purely coincidental.
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Terms and Definitions

assembly context

the components in conjuntion with a component. Speci�es which components

provide the component’s required interfaces.

Beagle

“BEhaviour Analysis using Genetic Learning and Evolution”. Approach for dy-

namic analysis of source code in order to �nd its behavioural attributes developed

in [Krogmann, 2011]. This project aims to implement Beagle.

ByCounter

tool that instruments Java bytecode and executes it in order to count how often

each method and Java Byte Code instruction is called. The resulting counts may

serve as �ne-grained, deployment-independent information about the measured

code’s resource demands [Kuperberg et al., 2008].

Common Trace API

an API developed by NovaTec GmbH for measuring the time, speci�c code

sections need to be executed.

component

“a [software] unit of composition with contractually speci�ed interfaces and

explicit context dependencies only. A software component can be deployed

independently and is subject to third-party composition.” [Szyperski, 2002]

There is no equivalent of components in modern programming languages, in

particular, a component usually consists of multiple Java classes. Components

can be nested.

component developer

“[speci�es] the functional and extra-functional properties of their

components. They put the speci�cation as well as the implementation

in repositories, where software architects can retrieve them.” [Koziolek

et al., 2007]
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In the PCM, component developers create service e�ect speci�cations to de�ne

components’ behavioural properties and store modelling and implementation

artefacts in repositories. [Reussner et al., 2011]

component-based so�ware

a software constituted of components.

component-based so�ware architecture

a software architecture utilising the concept of component-based software, there-

fore taking advantage of the reusability of its parts and preserving the same for

newly created components.

deployment context

in which environment a component runs. Speci�es which resources are available

to the component. Includes information like the performance of the hardware

the component runs on but also information about the software resources like

the virtual machine or thread pools.

internal action

sequence of commands a component executes without leaving its scope (e.g.

without calling other components). Part of a component’s SEFF.

Java Runtime Environment

a software set containing a Java Virtual Machine, a browser plugin, the Java

standard libraries, and a con�guration tool. The Java Virtual Machine it contains

is needed to run Java applications or applets.

Kieker

“a Java-based application performance monitoring and dynamic soft-

ware analysis framework.” [van Hoorn et al., 2012]

A measurement software Beagle aims to support.

layer

describes conceptual separation in software.

measurement so�ware

software capable of measuring the time, given source code needs to execute some

task. The software’s results are usually returned in a time unit like nanoseconds.

Beagles interacts with such software through the CTA and uses it to �nd resource

demands.

36



Terms and De�nitions

Palladio

an approach to the predict QoS properties of component-based software architec-

tures with a special focus on performance properties.

Palladio Component Model

a domain-speci�c modelling language (DSL) used by Palladio.

It is designed to enable early performance predictions for software

architectures and is aligned with a component-based software devel-

opment process. [Kounev, 2009]

PCM source code decorator

realises links from the source code to the elements in the PCM and the other way

round. [Krogmann, 2011]

PCM Stochastic Expression Language

expression language used by the PCM to de�ne random variables. These variables

can for example be used to specify glsplresource demand. Random variables can

be de�ned using basic mathematic operations, common stochastic distributions

and interface parameters [Reussner et al., 2011].

quality of service

a software’s extra-functional attributes, like performance, reliability, maintain-

ability or security.

resource demand

how much of a certain resource—like Central Processing Unit (CPU), Network

or hard disk drive—a component needs to o�er a certain functionality. In the

PCM, resource demands are part of the SEFF. They are ideally speci�ed platform

independently, e.g. by specifying required CPU cycles, megabytes to be read, etc.

If such information is not available, resource demands can be expressed platform

dependent, e.g. in nanoseconds. In this case, a certain degree of portability can

still be achieved if information about the used platforms’ speed relative to each

other is available.

SEFF condition

conditions (like Java’s if, if-else and switch-case statements) which a�ect the

calls a component makes to other components. Such conditions are—contrary

to conditions that stay within an internal action—modelled in the component’s

SEFF.
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SEFF loop

loops (like Java’s for, while and do-while statement) which a�ect the calls a

component makes to other components. Such loops are—contrary to loops that

stay within an internal action—modelled in the component’s SEFF.

service e�ect specification

description of a component’s behaviour in the PCM. SEFFs contain information

about the component’s calls to other components as well as its resource demands.

This information is used to derive the component’s performance for simulation

and prediction.

so�ware architect

developer role in the component-based software development process. Leads

the development process by designing the software’s architecture from existing

or planned components and interfaces. Usually delegates the speci�cation of

required components to component developers. Uses architectural styles and

patterns, analyses architectural speci�cations, and makes design decisions. In

the PCM, software architects create the assembly model, specifying how existing

components are composed. [Reussner et al., 2011]

so�ware architecture

the high-level structure and design of a software system as well as the discipline

of creating and documenting these.

SoMoX

“Software Model eXtractor”, a Palladio plugin for static code analysis to re-

engineer a software’s architecture from its source code developed in [Krogmann,

2011]. Constructs a PCM instance including the reconstructed components and

their SEFF.

system

the useful whole created from diverse parts. A system (usually) re�ects the

organizational structure that built it. (Conway’s law) [Conway, 1968]

system deployer

developer role in the component-based software development process. Speci�es

the resource environment and allocates components to resources. Resources can

both be hardware resources (CPU, hard disk, network connection) and software

resources (thread pool, database connection). In the PCM, system deployers create

the resource environment speci�cation, modelling the resource environment and

component allocations. [Reussner et al., 2011]
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usage context

how a component is used. Includes the number, frequency and distribution of

calls made the the component’s services.
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